On Monosplines with Nonnegative Coefficients

A. A. Zhensykbaev
Department of Mathematics, Kazakh State University, Alma-Ata 480121, USSR
Communicated by Charles K. Chui
Received May 2, 1986

In this paper we establish some inequalities for monosplines and apply them to best quadrature formulas for certain classes of functions with a nonsymmetric norm.

1

Let $w(t)$ be an integrable function on $[0,1]$ such that

$$
\begin{equation*}
\text { meas } E(w \leqslant 0)=0 \text {, } \tag{1}
\end{equation*}
$$

let $r \geqslant 1$ be an integer and let A, B be given subsets (possibly empty) of $Z_{r}=\{0, \ldots, r-1\}$.
$M_{N}^{r}(A, B)$ denotes the set of monosplines

$$
\begin{align*}
M(x)=w_{r}(x)- & \sum_{i=1}^{n} \sum_{j=0}^{r-1} a_{i j}\left(x-x_{i}\right)_{+}^{r-1-j}+\sum_{k=0}^{r-1} b_{k} x^{k}, \tag{2}\\
& \sum_{i=1}^{n} \sum_{j=0}^{r-1} \operatorname{sgn}\left|a_{i j}\right| \leqslant N
\end{align*}
$$

which satisfy the boundary conditions

$$
\begin{equation*}
M^{(i)}(0)=0 \quad(i \in A), \quad M^{(j)}(1)=0 \quad(j \in B), \tag{3}
\end{equation*}
$$

where

$$
w_{r}(x)=\int_{0}^{1} w(t)(x-t)_{+}^{r-1} d t, \quad u_{+}^{m}= \begin{cases}u^{m}, & u>0 \\ 0, & u \leqslant 0\end{cases}
$$

Also, let

$$
\begin{gathered}
M_{N}^{r o}(A, B):=M_{N}^{r}(A, B) \cap C^{r-2}[0,1] . \\
172
\end{gathered}
$$

The monosplines $M \in M_{N}^{r 0}(A, B)$ have the form

$$
\begin{equation*}
M(x)=w_{r}(x)-\sum_{i=1}^{N} a_{i}\left(x-x_{i}\right)_{+}^{r-1}+\sum_{k=0}^{r-1} b_{k} x^{k} . \tag{4}
\end{equation*}
$$

Finally, let $M_{N}^{r+}(A, B)$ denote the set of all monosplines $M \in M_{N}^{r 0}(A, B)$ which have nonnegative coefficients $a_{i}(i=1: N)$ in the representation (4).

Let $M_{N}^{r}, M_{N}^{r 0}, M_{N}^{r+}$ be the corresponding sets of 1-periodic monosplines. They have the representation

$$
\begin{gathered}
M(x)=w_{r}(x)-\sum_{i=1}^{n} \sum_{j=1}^{r-1} a_{i j} D_{r-j}\left(x-x_{i}\right)+a_{0}, \quad \sum_{i=1}^{n} a_{i 0}=\int_{0}^{1} w(t) d t \\
\sum_{i=1}^{n} \sum_{j=0}^{r-1} \operatorname{sgn}\left|a_{i j}\right| \leqslant N
\end{gathered}
$$

where $x_{1}<\cdots<x_{n}<x_{1}+1$,

$$
\begin{gathered}
w_{r}(x)=\int_{0}^{1} w(t) D_{r}(x-t) d t \\
D_{m}(u)=(m-1)!/\left(2^{m-1} \pi^{m}\right) \sum_{k=1}^{\infty} k^{-m} \cos (2 \pi k u-\pi m / 2)
\end{gathered}
$$

(in this case $w(t)$ is a 1-periodic function). If $M \in M_{N}^{r 0}$ then

$$
\begin{equation*}
M(x)=w_{r}(x)-\sum_{i=1}^{N} a_{i} D_{r}\left(x-x_{i}\right)+a_{0}, \quad \sum_{i=1}^{N} a_{i}=\int_{0}^{1} w(t) d t . \tag{6}
\end{equation*}
$$

The monosplines $M \in M_{N}^{r_{+}^{+}}$have nonnegative coefficients $a_{i}(i=1: N)$ in representation (6). We deduce from (2) and (5) that

$$
\begin{gather*}
M^{(r)}(x)=(r-1)!w(x) \text { almost everywhere on }[0,1], \tag{7}\\
a_{i j}=\left(M^{(r-1-j)}\left(x_{i}-0\right)-M^{(r-1-j)}\left(x_{i}+0\right)\right) /(r-1-j)! \\
\quad(i=1: n ; j=0: r-1) . \tag{8}
\end{gather*}
$$

In view of (3), (7), (1) we have

$$
\begin{gathered}
v(M) \leqslant 2 N+r-|A|-|B|=: v \quad \forall M \in M_{N}^{r}(A, B), \\
v(M) \leqslant 2 N \quad \forall M \in M_{N}^{r},
\end{gathered}
$$

where $v(f)$ is the number of zeros of f on $(0,1)$ (or on the period) counting multiplicities (see, e.g., [1]), and $|G|$ is the number of elements of set G. If $M \in M_{N}^{r 0}(A, B)\left(M \in M_{N}^{r 0}\right)$ satisfies $v(M)=v(v(M)=2 N)$ then in view of (8) $M \in M_{N}^{r+}(A, B)\left(M \in M_{N}^{r^{+}}\right)$.

By $\mu(f)$ we denote the number of sign changes of f on $[0,1]$ (or on the period). For monosplines we have

$$
\mu(M) \leqslant v \quad \forall M \in M_{N}^{r}(A, B), \quad \mu(M) \leqslant 2 N \quad \forall M \in M_{N}^{r}
$$

Lemma. Let $U(x)$ and $V(x)$ be two splines

$$
\begin{aligned}
& U(x)=\int_{0}^{x} u(t) d t-\sum_{i=1}^{m} a_{i}\left(x-x_{i}\right)_{+}^{0}+a_{0} \\
& V(x)=\int_{0}^{x} v(t) d t-\sum_{i=1}^{n} b_{i}\left(x-y_{i}\right)_{+}^{0}+b_{0}
\end{aligned}
$$

where u and v are an integrable on $[0,1]$ functions and

$$
\begin{equation*}
\text { meas } E(u<v)=0 \tag{9}
\end{equation*}
$$

Then the difference $s(x)=U(x)-V(x)$ has at most $2 n_{i}+1$ sign changes on $\left(x_{i-1}, x_{i}\right)\left(i=1: m+1 ; x_{0}=0, x_{m+1}=1\right)$, where n_{i} is the number of points $y_{j} \in\left(x_{i-1}, x_{i}\right)$ such that the corresponding coefficients b_{j} are negative $\left(0 \leqslant n_{i} \leqslant n\right)$. If $s(x)$ has $2 n_{i}+1$ sign changes on $\left(x_{i-1}, x_{i}\right)$ then $s\left(x_{i-1}+0\right)<0, s\left(x_{i}-0\right)>0$.

Proof. In view of (9) the difference $s(x)$ increases on each interval which does not contain the points $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$. Hence, $s(x)$ can change sign on this interval from "minus" to "plus." At the points $y_{j} \in\left(x_{i-1}, x_{i}\right)$ for which the corresponding coefficients b_{j} are negative the function $s(x)$ can change the sign from "plus" to "minus" also, because

$$
s\left(y_{j}-0\right)-s\left(y_{j}+0\right)=b_{j} \geqslant 0 .
$$

Thus, $s(x)$ can change sign from "plus" to "minus" on $\left(x_{i-1}, x_{i}\right)$ at most n_{i} times and the lemma is proved.

Corollary. Let $M_{0} \in M_{N}^{r+}(A, B)$ and $c \in[0,1]$ be fixed. Then for every $M \in M_{N}^{r}(A, B)$

$$
\begin{equation*}
\mu\left(M^{(r-1)}-c M_{0}^{(r-1)}\right) \leqslant 2 N+1-A_{r-1}-B_{r-1} \tag{10}
\end{equation*}
$$

where

$$
A_{r-1}=\left\{\begin{array}{ll}
1, & r-1 \in A \\
0, & r-1 \notin A,
\end{array} \quad B_{r-1}= \begin{cases}1, & r-1 \in B \\
0, & r-1 \notin B .\end{cases}\right.
$$

For $M_{0} \in M_{N}^{r+}$ and $M \in M_{N}^{r}$ we have

$$
\begin{equation*}
\mu\left(M^{(r-1)}-c M_{0}^{(r-1)}\right) \leqslant 2 N \tag{11}
\end{equation*}
$$

2

Theorem 1. Let $M \in M_{N}^{r 0}(A, B)$ and $v(M)=v$. Then

$$
\begin{align*}
& \left|M^{(k)}(0)\right| \leqslant\left|M_{0}^{(k)}(0)\right|\|M\| /\left\|M_{0}\right\| \\
& \left|M^{(k)}(1)\right| \leqslant\left|M_{0}^{(k)}(1)\right|\|M\| /\left\|M_{0}\right\| \quad(k=0: r-1) \tag{12}
\end{align*}
$$

where M_{0} is the monospline of minimal L_{∞}-norm in $M_{N}^{r}(A, B)$ ($M_{0} \in M_{N}^{r_{+}}(A, B)$, see, e.g., [1] $),\|\cdot\|=\|\cdot\|_{\infty}$.

Proof. Since $v(M)=v, M \in M_{N}^{r+}(A, B)$ and

$$
\operatorname{sgn} M^{(k)}(0)=\operatorname{sgn} M_{0}^{(k)}(0), \quad \operatorname{sgn} M^{(k)}(1)=\operatorname{sgn} M_{0}^{(k)}(1) \quad(k=0: r-1)
$$

If $\left|M^{(k)}(0)\right| \leqslant\left|M_{0}^{(k)}(0)\right|$ then the inequality (12) holds, because

$$
\left\|M_{0}\right\| \leqslant\|M\| \quad \forall M \in M_{N}^{r}(A, B) .
$$

Assume that there exists a monospline $M \in M_{N}^{r 0}(A, B)$ such that $\nu(M)=v$ and for fixed $k\left|M^{(k)}(0)\right|>\left|M_{0}^{(k)}(0)\right|$,

$$
\left|M^{(k)}(0)\right|>\left|M_{0}^{(k)}(0)\right|\|M\| /\left\|M_{0}\right\|
$$

The monospline M_{0} has $v+1$ alternation points $0 \leqslant z_{1}<\cdots<z_{v+1} \leqslant 1$ (see [1]).

$$
\left|M_{0}\left(z_{i}\right)\right|=\left\|M_{0}\right\|, \quad M\left(z_{i}\right) \cdot M\left(z_{i+1}\right)<0 .
$$

Hence the difference

$$
s(x)=M_{0}(x)-c_{k} M(x), \quad c_{k}=M_{0}^{(k)}(0) / M^{(k)}(0), \quad c_{k} \in(0,1)
$$

has v sign changes on $[0,1]: \mu(s) \geqslant v$. Thus,

$$
\begin{equation*}
\mu\left(s^{(k)}\right) \geqslant v-k+\alpha_{k}+\beta_{k}, \tag{13}
\end{equation*}
$$

where $\alpha_{k}\left(\beta_{k}\right)$ is the number of elements of $A(B)$ which are less than k. Since $s^{(k)}(0)=0$ we have,

$$
\mu\left(s^{(r-1)}\right) \geqslant 2 N+2-A_{r-1}-B_{r-1}, \quad k<r-1 .
$$

This inequality contradicts (10). If $k=r-1$ then $A_{r-1}=0$ and by the lemma $\mu\left(s^{(r-1)}\right) \leqslant 2 N-B_{r-1}$. This inequality contradicts (13). Theorem 1 is proved.

The following result is valid for a periodic setting.

Theorem 2. Let $w(t) \equiv \mathrm{const} \neq 0$, then for every $M \in M_{N}^{r+}$

$$
\begin{equation*}
\left\|M^{(k)}\right\| \leqslant\|M\|\left\|M_{0}^{(k)}\right\| /\left\|M_{0}\right\| \quad(k=0: r-1) \tag{14}
\end{equation*}
$$

where M_{0} is the monospline with minimal $L_{\infty}-$ norm in $M_{N}^{r}\left(M_{0} \in M_{N}^{r+}\right.$, see, e.g., [1, 2]).

Remark. The monospline M_{0} has the form

$$
M_{0}(x)=N^{-r}\left(-D_{r}(N x)+c_{r}\right),
$$

where c_{r} is the constant of the best uniform approximation of $D_{r}(x)$,

$$
\left\|D_{r}-c_{r}\right\|=\inf \left\|D_{r}-c\right\|=: K_{r}
$$

The inequality (14) can be rewritten in the form

$$
\left\|M^{(k)}\right\| \leqslant N^{k}\left\|D_{r-k}\right\| \cdot\|M\| / K_{r} \quad(k=1: r-1) .
$$

Proof. The monospline M_{0} has $2 N$ alternation points $z_{1}<\cdots<z_{2 N}<$ $z_{1}+1$. If $\left\|M^{(k)}\right\|<\left\|M_{0}^{(k)}\right\|(1 \leqslant k \leqslant r-1)$ then the inequality (14) holds because $\left\|M_{0}\right\|<\|M\|$.

Let $M(x)$ be a monospline in M_{N}^{r+} such that for fixed $k(1 \leqslant k \leqslant r-1)$

$$
\begin{equation*}
\left\|M^{(k)}\right\|>\left\|M_{0}^{(k)}\right\| \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|M^{(k)}\right\|>\left\|M_{0}^{(k)}\right\| \cdot\|M\| /\left\|M_{0}\right\| \tag{16}
\end{equation*}
$$

Let z_{0} be an extremal point of $M^{(k)}$,

$$
\left\|M^{(k)}\right\|=\left|M^{(k)}\left(z_{0}-0\right)\right| \quad \text { or } \quad\left\|M^{(k)}\right\|=\left|M^{(k)}\left(z_{0}+0\right)\right|
$$

We assume for concreteness that

$$
\left\|M^{(k)}\right\|=\left|M^{(k)}\left(z_{0}-0\right)\right|
$$

There exists a point u such that

$$
\begin{equation*}
\left|M_{0}^{(k)}\left(z_{0}+u\right)\right|=\max _{x}\left(M_{0}^{(k)}(x) \cdot \operatorname{sgn} M^{(k)}\left(z_{0}-0\right)\right) \tag{17}
\end{equation*}
$$

The difference

$$
s(x)=M_{0}(x+u)-c_{k} M(x), \quad c_{k}=\left|M_{0}^{(k)}\left(z_{0}+u\right)\right| /\left\|M^{(k)}\right\|
$$

has $2 N$ sign changes on the period

$$
\operatorname{sgn} s\left(z_{i}-u\right)=\operatorname{sgn} M_{0}\left(z_{i}\right) \quad(i=1: 2 N)
$$

because in view of (16)

$$
\begin{aligned}
\left|M_{0}\left(z_{i}\right)\right| & =\left\|M_{0}\right\|>\|M\| \cdot\left\|M_{0}^{(k)}\right\| /\left\|M^{(k)}\right\| \\
& \geqslant\left|M\left(z_{i}-u\right)\right|\left|M_{0}^{(k)}\left(z_{0}+u\right)\right| /\left\|M^{(k)}\right\| .
\end{aligned}
$$

Hence $\mu\left(s^{(k)}\right) \geqslant 2 N$. From (17) we obtain

$$
s^{(k)}\left(z_{0}\right)=0
$$

and

$$
s^{(k+1)}\left(z_{0}\right)=0 \quad(\text { if } k<r-2)
$$

Thus, for $k<r-2$

$$
\begin{equation*}
\mu\left(s^{(r-1)}\right) \geqslant 2 N+1 . \tag{18}
\end{equation*}
$$

On the other hand, in view of (15), $c_{k} \in(0,1)$, inequality (18) contradicts (11).

Let $k=r-1$. In this case z_{0} is the node of $M, z_{0}+u$ is the node of M_{0}. The function $s^{(r-1)}$ can change sign at the point z_{0} from "minus" to "plus" only. Hence, by the lemma $\mu\left(s^{(r-1)}\right) \leqslant 2 N-1$. But $\mu(s) \geqslant 2 N$ and $\mu\left(s^{(r-1)}\right) \geqslant 2 N$.

Let $k=r-2$. If z_{0} is a node of M, then $M^{(r-2)}\left(z_{0}\right)>0$ because $M \in M_{N}^{r+}$ and $M^{(r-1)}(x)$ can change sign from "plus" to "minus." Hence, $z_{0}+u$ is a node of M_{0}. In this case if the derivative $s^{(r-2)}$ changes sign at the point z_{0} then $s^{(r-1)}$ does not change sign at this point. By the lemma $\mu\left(s^{(r-1)}\right) \leqslant$ $2 N-1$. But on the other hand $\mu\left(s^{(r-1)}\right) \geqslant 2 N$. If $s^{(r-2)}$ does not change sign at the point z_{0} then $v\left(s^{(r-2)}\right) \geqslant 2 N+1$ and $\mu\left(s^{(r-1)}\right) \geqslant 2 N+1$. This inequality contradicts (11).

If z_{0} does not coincide with the nodes of M then $M^{(r-2)}\left(z_{0}\right)<0$. $M^{(r-1)}\left(z_{0}\right)=0 \quad$ and $\quad M_{0}^{(r-2)}\left(z_{0}+u\right)<0, \quad M^{(r-2)}\left(z_{0}+u\right)=0 . \quad H e n c e$, $s^{(r-1)}\left(z_{0}\right)=0$ and $s^{(r-2)}$ does not change sign at the point z_{0}. Thus, $v\left(s^{(r-2)}\right) \geqslant 2 N+1$ and $\mu\left(s^{(r-1)}\right) \geqslant 2 N+1$. This inequality contradicts (11). Theorem 2 is proved.

3

In [3] it was proved that for every $M \in M_{N}^{r}(A, B)\left(M \in M_{N}^{r}\right)$ there exists a monospline $M_{0} \in M_{N}^{r 0}(A, B)\left(M_{0} \in M_{N}^{r 0}\right)$ such that $\left|M_{0}(x)\right| \leqslant|M(x)|$ for every $x \in[0,1]$. From the proof of this inequality it follows that the monospline has nonnegative coefficients a_{i} in the representation (4) (or (6)) and the same sign as $M: M_{0}(x) \cdot M(x) \geqslant 0$. Thus the following theorem holds.

Theorem 3. For every $M \in M_{N}^{r}(A, B) \quad\left(M \in M_{N}^{r}\right)$ there exists a monospline $M_{0} \in M_{N}^{r+}(A, B)\left(M_{0} \in M_{N}^{r+}\right)$ such that

$$
\left|M_{0}(x)\right| \leqslant|M(x)|, \quad M_{0}(x) \cdot M(x) \geqslant 0 \quad \forall x
$$

Now we apply this theorem to the theory of the best quadrature formulas. We consider the following classes of functions having $r-1$ absolute continuous derivatives on $[0,1]$

$$
\begin{aligned}
W^{r}(u) & =\left\{f: \text { meas } E\left(\left|f^{(r)}\right|>u\right)=0\right\}, \\
W_{p}^{r}(u, v) & =\left\{f:\left\|u f_{+}^{(r)}+v f_{-}^{(r)}\right\|_{p} \leqslant 1\right\}, \\
W_{p, q}^{r}(u, v) & =\left\{f:\left\|u f_{+}^{(r)}\right\|_{p}+\left\|v f_{-}^{(r)}\right\|_{p} \leqslant 1\right\},
\end{aligned}
$$

where u and v are fixed positive integrable functions on $[0,1]$ such that $1 / u$ and $1 / v$ are integrable. In addition we define,

$$
g_{+}(x)=\max (g(x) ; 0), \quad g_{-}(x)=\max (-g(x) ; 0)
$$

$\tilde{W}^{r}(u), \tilde{W}_{p}^{r}(u, v), \tilde{W}_{p, q}^{r}(u, v)$ are the corresponding classes of 1-periodic functions.

THEOREM 4. Among all quadrature formulas,

$$
\begin{equation*}
\int_{0}^{1} w(t) f(t) d t=Q_{N}(f)+\sum_{k \in A} b_{k} f^{(k)}(0)+\sum_{m \in B} c_{m} f^{(m)}(1)+R(f) \tag{19}
\end{equation*}
$$

where w is a fixed integrable function, meas $E(w \leqslant 0)=0, A$ and B are fixed subsets of $Z_{r}($ if $A=\varnothing$ or $B=\varnothing$ then the corresponding sum equals zero),

$$
Q_{N}(f)=\sum_{i=1}^{n} \sum_{j=0}^{r-1} a_{i j} f^{(j)}\left(x_{i}\right), \quad \sum_{i=1}^{n} \sum_{j=0}^{r-1} \operatorname{sgn}\left|a_{i j}\right| \leqslant N
$$

$0<x_{1}<\cdots<x_{n}<1$, the best formula exists for the class $W^{r}(u)\left(W_{p}^{r}(u, v)\right.$, $\left.W_{p, q}^{r}(u, v)\right)$ and has the form

$$
\int_{0}^{1} w(t) f(t) d t=\sum_{i=1}^{N} a_{i} f\left(x_{i}\right)+\sum_{k \in A} b_{k} f^{(k)}(0)+\sum_{m \in B} c_{m} f^{(m)}(1)+R(f),
$$

and $a_{i}>0(i=1: N),(-1)^{k+\alpha_{k}} b_{k}>0(k \in A),(-1)^{\beta_{m}} c_{m}>0(m \in B)$ where $\alpha_{k}\left(\beta_{k}\right)$ is the number of elements of $A(B)$ that are less than k.

Theorem 5. Among all quadrature formulas on a periodic setting,

$$
\begin{equation*}
\int_{0}^{1} w(t) f(t) d t=Q_{N}(t)+R(f) \tag{20}
\end{equation*}
$$

the best formula exists for the class $\tilde{W}^{r}(u),\left(\tilde{W}_{p}^{r}(u, v), \tilde{W}_{p, q}^{r}(u, v)\right)$ and has the form

$$
\int_{0}^{1} w(t) f(t) d t=\sum_{i=1}^{N} a_{i} f\left(x_{i}\right)+R(f), \quad \sum_{i=1}^{N} a_{i}=\int_{0}^{1} w(t) d t
$$

$a_{i}>0(i=1: N)$.
Proof. Let us prove Theorem 4 for the class $W_{p}^{r}(u, v)$. The proofs of other results are similar.

It is known (see, e.g., $[1,4]$) that the error R of the best quadrature formula has the representation

$$
\begin{equation*}
R(f)=\left((-1)^{r} /(r-1)!\right) \int_{0}^{1} f^{(r)}(t) M(t) d t \tag{21}
\end{equation*}
$$

where $\quad M \in M_{N}^{r}\left(A^{1}, B^{1}\right), \quad A^{1}=\left\{i: r-1-i \in Z_{r} \backslash A\right\}, \quad B^{1}=\{i: r-1-i \in$ $\left.Z_{r} \backslash B\right\}$. The theorem follows from the following equality:

$$
\begin{align*}
R\left(W_{p}^{r}(u, v)\right): & =\sup _{f \in W_{p}^{r}(u, v)}|R(f)| \\
= & (1 /(r-1)!) \max \left(\left\|u^{-1} M_{+}+v^{-1} M_{-}\right\|_{p^{\prime}}\right. \\
& \left.\left\|v^{-1} M_{+}+u^{-1} M_{-}\right\|_{p^{\prime}}\right)=:\|M\|_{u, v, p^{\prime}}(r-1)! \tag{22}
\end{align*}
$$

$p^{\prime}=p /(p-1)$ because in view of Theorem 3

$$
\inf _{Q_{N}, b_{k}, c_{m}}(r-1)!R\left(W_{p}^{r}(u, v)\right)=\inf _{M \in M_{N}^{T}\left(A^{1}, B^{1}\right)}\|M\|_{u, v, p^{\prime}}=\|\bar{M}\|_{u, v, p^{\prime}}
$$

where $\bar{M} \in M_{N}^{r+}\left(A^{1}, B^{1}\right)$.
Now we establish the equality (22). Starting from (21) we obtain

$$
\begin{aligned}
(r-1)!|R(f)|= & \mid \int_{0}^{1}\left(f_{+}(t) M_{+}(t)+f_{-}(t) M_{-}(t)\right) d t \\
& -\int_{0}^{1}\left(f_{-}(t) M_{+}(t)+f_{+}(t) M_{-}(t)\right) d t \mid \\
\leqslant & \max \left\{\int_{0}^{1}\left(f_{+} M_{+}+f_{-} M_{-}\right) d t\right. \\
& \left.\int_{0}^{1}\left(f_{-} M_{+}+f_{+} M_{-}\right) d t\right\}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1}\left(f_{+} M_{+}+f_{-} M_{-}\right) d t & \leqslant \int_{0}^{1}\left(u f_{+}+v f_{-}\right)\left(u^{-1} M_{+}+v^{-1} M_{-}\right) d t \\
& \leqslant\left\|u^{-1} M_{+}+v^{-1} M_{-}\right\|_{p^{\prime}}, \\
\int_{0}^{1}\left(f_{-} M_{+}+f_{+} M_{-}\right) d t & \leqslant \int_{0}^{1}\left(u f_{+}+v f_{-}\right)\left(u^{-1} M_{-}+v^{-1} M_{+}\right) d t \\
& \leqslant\left\|v^{-1} M_{+}+u^{-1} M_{-}\right\|_{p^{\prime}} .
\end{aligned}
$$

Thus,

$$
(r-1)!R\left(W_{p}^{r}(u, v)\right) \leqslant\|M\|_{u, v, p^{\prime}}
$$

On the other hand, we have

$$
R\left(f_{1}\right)=\left\|u^{-1} M_{+}+v^{-1} M_{-}\right\|_{p^{\prime}}, \quad R\left(f_{2}\right)=\left\|v^{-1} M_{+}+u^{-1} M_{-}\right\|_{p^{\prime}},
$$

where $f_{1}, f_{2} \in W_{p}^{r}(u, v)$,

$$
\begin{aligned}
& \left.f_{1}^{(r)}(x)=\left(u^{-p^{\prime}}(x) M_{+}^{p^{\prime}-1}(x)-v^{-p^{\prime}}(x) M_{-}^{p^{\prime}-1}(x)\right)\right) /\left\|u^{-1} M_{+}+v^{-1} M_{-}\right\|_{p^{\prime} / p}^{p^{\prime} / p}, \\
& f_{2}^{(r)}(x)=\left(u^{-p^{\prime}}(x) M_{-}^{p^{\prime}-1}(x)-v^{-p^{\prime}}(x) M_{+}^{p^{p^{-}-1}}(x)\right) /\left\|v^{-1} M_{+}+u^{-1} M_{-}\right\|_{p}^{p^{\prime} / p},
\end{aligned}
$$

and

$$
(r-1)!R\left(W_{p}^{r}(u, v)\right) \geqslant \max \left(R\left(f_{1}\right), R\left(f_{2}\right)\right)=\|M\|_{u, v, p^{\prime}}
$$

For the class $W_{p, q}^{r}(u, v)$ we have the following expression for error R :

$$
\begin{align*}
(r-1)!R\left(W_{p, q}^{r}(u, v)=\right. & \max \left(\left\|u^{-1} M_{+}\right\|_{p^{\prime}} ;\left\|u^{-1} M_{-}\right\|_{p^{\prime}} ;\right. \\
& \left\|v^{-1} M_{+}\right\|_{q^{\prime}},\left\|v^{-1} M_{-}\right\|_{q^{\prime}} \\
= & \|M\|_{\mu, v, p^{\prime}, q^{\prime}} \quad\left(p^{\prime}=p /(p-1), q^{\prime}=q /(q-1),\right. \\
\inf _{Q_{N, b k}, c_{m}}(r-1)!R\left(W_{p, q}^{r}(u, v)\right)= & \inf _{M \in M_{\mathcal{N}}^{\prime}\left(A^{1}, B^{1}\right)}\|M\|_{u, v, p^{\prime}, q^{\prime}} \\
= & \left\|M_{0}\right\|_{u, v, p^{\prime}, q^{\prime}}, \tag{23}
\end{align*}
$$

where $M_{0} \in M_{N}^{r_{N}^{+}}\left(A^{\prime}, B^{\prime}\right)$.

Let $u(x)$ and $v(x)$ be two positive continuous functions on [0,1]. By the theorem on snakes for monosplines (see $[3,5]$) there is a unique monospline $\bar{M} \in M_{N}^{r 0}(A, B)$ and a positive constant c such that

$$
\begin{equation*}
-v(x) \leqslant c \bar{M}(x) \leqslant u(x) \tag{24}
\end{equation*}
$$

and there exist $\alpha:=2 N+r+1-|A|-|B|$ points

$$
0 \leqslant z_{1}<\cdots<z_{\alpha} \leqslant 1
$$

at which

$$
\begin{equation*}
c \bar{M}\left(z_{i}\right)=-v\left(z_{i}\right)(i \text { odd }), \quad c \bar{M}\left(z_{i}\right)=u\left(z_{i}\right)(i \text { even }) \tag{25}
\end{equation*}
$$

For an arbitrary monospline $M \in M_{N}^{r}(A, B)(M \not \equiv \bar{M})$

$$
\begin{equation*}
\|M\|_{u, v}>\|\bar{M}\|_{u, v}=1 / c \quad\left(\|f\|_{u, v}=\left\|u^{-1} f_{+}+v^{-1} f_{-}\right\|_{\infty}\right) \tag{26}
\end{equation*}
$$

Indeed, if there exists a monospline $M \in M_{N}^{r 0}(A, B)$ such that

$$
\|M\|_{u, v} \leqslant\|\bar{M}\|_{u, v}
$$

then in view of (24) and (25) $v(x) \geqslant \alpha-1, s=\bar{M}-M$. But s is spline of $r-1$ order with at most $2 N$ nodes and with minimal defect and $s^{(i)}(0)=0$ $(i \in A), s^{(j)}(1)=0(j \in B)$. Hence, $v(s) \leqslant \alpha-2$. This contradiction proves (26). Thus, in view of Theorem 3 we have proved the following result.

Theorem 6. Let u and v be two positive continuous functions on [0, 1]. There exists a unique monospline \bar{M} with minimal (u, v)-norm in $M_{N}^{r}(A, B)$, $\bar{M} \in M_{N}^{r+}(A, B)$. The monospline \bar{M} has minimal (u, v)-norm if and only if the function $u^{-1} \bar{M}_{+}+v^{-1} \bar{M}_{-}$has $2 N+r+1-|A|-|B|$ alternation points on $[0,1]$.

In view of (22) and (23) the following theorem holds.

Theorem 7. Let u and v be two positive continuous functions on [0, 1]. Let M_{1} be the monospline with minimal (u, v)-norm $((u, u)$-norm) in $M_{N}^{r}\left(A^{1}, B^{1}\right)$ and M_{2} be the monospline with minimal (v, u)-norm $((v, v)$ norm). If $\left\|M_{1}\right\|_{u, v}=\left\|M_{2}\right\|_{v, u}\left(\left\|M_{1}\right\|_{u, u}=\left\|M_{2}\right\|_{v, v}\right)$ then there exist exactly two best quadrature formulas of the form (19) for the class $W_{1}^{r}(u, v)$ $\left(W_{1,1}^{r}(u, v)\right)$. They are defined by the nodes and the coefficients of the monosplines M_{1} and M_{2} (see, e.g., [1, 4]). If $\left\|M_{1}\right\|_{u, v} \neq\left\|M_{2}\right\|_{u, v}\left(\left\|M_{1}\right\|_{u, u} \neq\right.$ $\left\|M_{2}\right\|_{v, v}$) then this formula is unique and defined by the monospline having bigger norm.

In a similar way the following theorem can be proved.
Theorem 8. Let u and v be two positive 1-periodic continuous functions. There exists a unique monospline M_{ξ} with minimal (u, v)-norm in $M_{N}^{r}(\xi)$, $M_{\xi} \in M_{N}^{++}(\xi)$, where $M_{N}^{r}(\xi)$ and $M_{N}^{r+}(\xi)$ are the sets of monosplines from M_{N}^{r} and M_{N}^{r+} which have one fixed node at the point ξ. The monospline M has minimal (u, v)-norm in $M_{N}^{r}(\xi)$ if and only if the function $u^{-1} M_{+}+$ $v^{-1} M_{-}$has $2 N$ alternation points on the period.

THEOREM 9. Let u and v be two positive 1-periodic continuous functions and ξ be a fixed point. M_{1} denotes the monospline with minimal (u, v)-norm $((u, u)$-norm $)$ in $M_{N}^{r}(\xi)$ and M_{2} denotes the monospline with minimal (v, u) norm (v,v-norm). If $\left\|M_{1}\right\|_{u, v}=\left\|M_{2}\right\|_{v, u}$ then there exist exactly two best quadrature formulas for the class $\tilde{W}_{1}^{r}(u, v)\left(\tilde{W}_{1,1}^{r}(u, v)\right)$ of form (20) with fixed node x_{1} at the point ξ. They are defined by the nodes and the coefficients of the monosplines M_{1} and M_{2}. If $\left\|M_{1}\right\|_{u, v} \neq\left\|M_{2}\right\|_{v, u}\left(\left\|M_{1}\right\|_{u, u} \neq\right.$ $\left\|M_{2}\right\|_{v, v}$) then this formula is unique and is defined by the monospline having bigger norm.

References

1. A. A. Zhensykbaev, Monosplines of minimal norm and the best quadrature formulas, Uspekhi Mat. Nauk 36 (1981), 107-159; English transl. in Russian ath. Surveys 36 (1981), 121-180.
2. A. A. Ligun, Best quadrature formulas for some classes of periodic functions, Mat. Zametki 24 (1978), 661-669; English transl. in Math. Notes 24 (1978).
3. A. A. Zhensykbaev, Extremality of monosplines of minimal deficiency, Izv. Akad. Nauk SSSR Ser. Mat. 46, No. 6 (1982), 1175-1198; English transl. in Math. USSR-Izv.
4. S. M. Nikolski, "Quadrature Formulas," Nauka, Moscow, 1979.
5. A. A. Zhensykbaev, Extremal properties of certain sets of splines and their applications, in "Constructive Theory of Functions '84," pp. 917-927, Proc. Internat. Conf. on Constructive Theory of Functions, Varna, May 27-June 2, 1984, Sofia, 1984.
