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In this paper we establish some inequalities for monosplines and apply
them to best quadrature formulas for certain classes of functions with a
nonsymmetric norm.

1

Let w(t) be an integrable function on [0, 1] such that

meas E(w~ 0) = 0, (1)

let r ~ 1 be an integer and let A, B be given subsets (possibly empty) of
Zr= {O, ..., r-l}.

M';v(A, B) denotes the set of monosplines

n r-l r-l

M(x)=wr(x)- L L aij(x-x;)':;I- J+ L bkxk,
i~ 1 J~O k~O

n r-l

L L sgn laijl ~N
i= 1 J=O

which satisfy the boundary conditions

(2)

where

(3)

Also, let

Wr(X) = ( W(t)(X - t)':r- 1 dt,
{

Urn

Un;. = 0,'
U>o

U~O.

M~(A, B) :=M';v(A, B)n C- 2 [0, 1].
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MONOSPLINES

The monosplines ME M':(A, B) have the form

N r-I
M(x)=wAx)- L a;(x-x;Y+- 1 + L bkxk.

;= 1 k=O
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(4)

Finally, let Mr,.+ (A, B) denote the set of all monosplines ME M':(A, B)
which have nonnegative coefficients a; (i= 1: N) in the representation (4).

Let Mr,., M':, Mr,.+ be the corresponding sets of I-periodic monosplines.
They have the representation

n r-l

M(x)=wr(x)- L L aijDr_ix-x;)+ao,
;= 1 )= 1

n r-l

L L sgn laijl ~N,
;= 1 )=0

wr(x) = ( w(t) Dr(x - t) dt,

f a;o =rw(t) dt,
;=1 0 (5)

00

Dm(u)=(m-l)!/(2m-I nm) L k-mcos(2nku-nmj2)
k=1

(in this case w(t) is a I-periodic function). If Me M': then

N

M(x)=wr(x)- L a;DAx-x;)+ao,
;=1

N 1

L a;=f w(t)dt.
;= 1 0

(6)

The monosplines ME Mr,.+ have nonnegative coefficients a; (i = 1 : N) in
representation (6). We deduce from (2) and (5) that

M(r)(x) = (r-l)! w(x) almost everywhere on [0,1], (7)

aij= (M(r-I-))(x; - 0) - M(r-I-)(x; + O»)/(r - 1- j)!

(i = 1 : n; j = 0 : r - 1). (8)

In view of (3), (7), (1) we have

v(M)~2N+r-IAI-IBI =: v VMeMr,.(A, B),

v(M)~2N VMeM~,

where vU) is the number of zeros offon (0, 1) (or on the period) counting
multiplicities (see, e.g., [1]), and IGI is the number of elements of set G. If
Me M':(A, B) (M eM':) satisfies v(M) = v (v(M) = 2N) then in view of (8)
Me Mr,.+(A, B) (MeMr,.+).
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By jJ.(f) we denote the number of sign changes off on [0, 1] (or on the
period). For monosplines we have

jJ.(M):::;v VMeM'tv(A, B), jJ.(M):::;2N VMeM'tv.

LEMMA. Let U(x) and V(x) be two splines

I
x m

U(x) = u(t) dt - L a;(x - X;)~ + ao,
o i= I

I
x n

V(x)= v(t)dt- L b;(x- Y;)~ +bo,
o ;= 1

where u and v are an integrable on [0, 1] functions and

meas E( u < v) = O. (9)

Then the difference s(x) = U(x) - V(x) has at most 2n i+ 1 sign changes on
(Xi_I, X;) (i= 1 : m + 1; Xo = 0, x m +1= 1), where n; is the number of points
yje (Xi_I> xJ such that the corresponding coefficients bj are negative
(0:::; n;:::; n). If s(x) has 2n;+ 1 sign changes on (X;_I' xJ then
S(X;_I +0)<0, s(x;-O»O.

Proof In view of (9) the difference s(x) increases on each interval
which does not contain the points XI> ..., x m , Yl' ..., Yn- Hence, s(x) can
change sign on this interval from "minus" to "plus." At the points
yje(xi_l,xJ for which the corresponding coefficients bj are negative the
function s(x) can change the sign from "plus" to "minus" also, because

s(Yj- 0) - s(Yj+ 0) = bj ~ O.

Thus, s(x) can change sign from "plus" to "minus" on (x;_1> xJ at most n;
times and the lemma is proved. I

COROLLARY. Let M oe M'tv+ (A, B) and c e [0, 1] be fixed. Thenfor every
MeM'tv(A, B)

where

{
1,

A r _ 1 = 0,
r-1eA

r-1 riA, {
1,

Br _ 1 = 0,
r-1 eB

r-1 riB.

For M oe M'tv+ and Me M';y we have

(11 )
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2

THEOREM 1. Let M E M~(A, B) and v(M) = v. Then

IM(k)(O)1 ~ IM&kl(O)IIIMII/IIMoll

IM(kl(1)1 ~ IM&kl(l)IIIMII/IIMoll (k=O: r-1),
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(12)

M~(A, B)where Mo is the monospline of minimal Loo-norm in
(MoEM~+(A, B), see, e.g., [1]), 11·11 = 11·1100.

Proof Since v(M) = v, M E M~+ (A, B) and

sgn M(kl(O) = sgn M&k)(O), sgn M(k)(1) = sgn M&k)(1) (k = 0: r - 1).

If IM(kl(O)1 ~ IM&k)(O)1 then the inequality (12) holds, because

IIMoll~IIMII VMEM~(A, B).

Assume that there exists a monospline M E M~(A, B) such that v(M) = v
and for fixed k IM(k)(O)1 > IM&kl(O)I,

IM(k)(O)1 > IM&kl(O)IIIMII/IIMoll.

The monospline M 0 has v+ 1 alternation points 0 ~ Z 1 < ... < Z v + 1 ~ 1
(see [1]).

M(z;)· M(Zi+ d < O.

Hence the difference

has v sign changes on [0, 1]: J.L(s) ~ v. Thus,

J.L(S(k l ) ~ v - k + r1. k+ 13k> (13 )

where r1.k(13d is the number of elements of A(B) which are less than k. Since
S(k)(O) = 0 we have,

k<r-1.

This inequality contradicts (10). If k=r-1 then Ar_1=0 and by the
lemma J.L(s(r-l») ~ 2N - Br_ 1 • This inequality contradicts (13). Theorem 1
is proved. I

The following result is valid for a periodic setting.



176 A. A. ZHENSYKBAEV

THEOREM 2. Let w(t) == const "1= 0, then for every ME M'tv+

(k =0: r-l), (14)

where M o is the monospline with minimal Loco-norm in M'tv (MoE M'tv+, see,
e.g., [1,2]).

Remark. The monospline M 0 has the form

where Cr is the constant of the best uniform approximation of Dr(x),

The inequality (14) can be rewritten in the form

(k = 1 : r-1).

Proof The monospline M o has 2N alternation points z, < ... <Z2N<
z, + 1. If IIM(klll < IIM&klll (1 ~k~r-l) then the inequality (14) holds
because IIMol1 < IIMII.

Let M(x) be a monospline in M'tv+ such that for fixed k (1 ~k~r-1)

(15)

and

(16)

Let Zo be an extremal point of M(k J,

or

We assume for concreteness that

There exists a point u such that

IM&kl(ZO+u)1 =max(M&kl(x).sgnM(kl(zo-O)). (17)
x

The difference

has 2N sign changes on the period

sgn s(z; - u) = sgn Mo(z;) (i= 1: 2N)
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because in view of (16)

IMo(z;)1 = IIMol1 > IIMII·IIM&k)II/IIM(k)11

~ IM(z;-u)IIM&k)(ZO+u)I/IIM(k)ll.

Hence Jl(S(k») ~ 2N. From (17) we obtain

S(k)(ZO) =°
and
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(if k < r- 2).

Thus, for k < r - 2

(18)

On the other hand, in view of (15), ekE (0, 1), inequality (18) contradicts
(11 ).

Let k = r - 1. In this case Zo is the node of M, Zo + u is the node of Mo.
The function s(r-I) can change sign at the point Zo from "minus" to "plus"
only. Hence, by the lemma Jl(s(r-I») ~ 2N -1. But Jl(s) ~ 2N and
Jl(s(r - I») ~ 2N.

Let k = r - 2. If Zo is a node of M, then M (r - 2)(ZO) >°because ME Mr,t
and M (r - 1)(x) can change sign from "plus" to "minus." Hence, z0 +u is a
node of Mo. In this case if the derivative s(r-2) changes sign at the point Zo
then s(r-I) does not change sign at this point. By the lemma Jl(s(r-I)) ~
2N -1. But on the other hand Jl(s(r-I)) ~ 2N. If s(r-2) does not change sign
at the point Zo then v(s(r-2»)~2N+l and Jl(s(r-1))~2N+1. This
inequality contradicts (11).

If Zo does not coincide with the nodes of M then M(r- 2)(zo) < 0.
M(r-I)(zo)=O and M&,,-2)(zo+U)<0, M(r-2)(zo+u)=0. Hence,
s(r-I)(zo)=O and s(r-2) does not change sign at the point zo0 Thus,
v(slr-2») ~ 2N + 1 and Jl(s(r-I») ~ 2N + 1. This inequality contradicts (11).
Theorem 2 is proved. I

3

In [3] it was proved that for every ME Mr,.(A, B) (M E Mr,.) there exists
a monospline MoEM'J(A, B) (MoEM'J) such that IMo(x)l~ IM(x)1 for
every x E [0, 1]. From the proof of this inequality it follows that the
monospline has nonnegative coefficients a; in the representation (4)
(or (6)) and the same sign as M: Mo(x)· M(x) ~ 0. Thus the following
theorem holds.
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THEOREM 3. For every M E M~(A, B) (M E M~) there exists a
monospline MoEM~+(A, B) (MoEM~+) such that

"Ix.

Now we apply this theorem to the theory of the best quadrature for
mulas. We consider the following classes of functions having r - 1 absolute
continuous derivatives on [0, 1]

W(u) = {f meas E(lpr)1 > u) = O},

W~(u, v)= {f Iluf~l+vf(r)llp::;;1},

W~,q(u, v)= {f Iluf~lllp+ Ilvf(rlllp::;; 1},

where u and v are fixed positive integrable functions on [0, 1] such that 11u
and 1/v are integrable. In addition we define,

g +(x) = max(g(x); 0), g _(x) = max( - g(x); 0).

W( u), W~(u, v), W~)u, v) are the corresponding classes of I-periodic
functions.

THEOREM 4. Among all quadrature formulas,

rw(t)f(t) dt= QN(f) + L bkf(k)(O)+ L cmf(m 1(1) + R(f), (19)
o kEA mEB

where w is a fixed integrable function, meas E( w ::;; 0) = 0, A and B are fixed
subsets of Z r (if A = 0 or B = 0 then the corresponding sum equals zero),

n r-l

QN(f) = L L aijfU)(xJ,
i= 1 )~O

n r-l

L L sgn laijl ::;;N,
i= 1 )=0

O<Xl< ... <xn <l, the best formula existsfor the class W(u) (W~(u,v),

W~,q(u, v)) and has the form

1 Nf. w(t) f(t) dt = L aJ(xJ + L bkPk1(0) + L cmpm1(1) + R(f),
o i~l kEA mEB

and ai >°(i = 1 : N), ( _l)k +otk bk >°(k E A), ( -1 )Pm Cm>°(m E B) where
(Xk(Pd is the number of elements of A(B) that are less than k.

THEOREM 5. Among all quadrature formulas on a periodic setting,

( w(t)f(t)dt=QN(t)+R(f), (20)



MONOSPLINES 179

the best formula exists for the class W( u), (w;( u, v), w;)u, v)) and has the
form

I Nf. w(t) f(t) dt = L aJ(xJ + R(f),
o j~ I

a;>O U= 1: N).

N I

L a j = f. w(t) dt,
j~1 0

Proof Let us prove Theorem 4 for the class W;(u, v). The proofs of
other results are similar.

It is known (see, e.g., [1,4]) that the error R of the best quadrature
formula has the representation

R(f) = (( -1 Y/(r - 1)!) ( prl(t) M(t) dt, (21)

where MEM:-V(Al,BI), A I ={i:r-1-iEZr\A}, BI ={i:r-1-iE
Z r \ B}. The theorem follows from the following equality:

R( W;(u, v)):= sup IR(f)1
fE W;(u.v)

= (1/(r-1)!) max(llu-IM + +v- 1M _lip';

Ilv- I M + + u-IM_II p.) =: IIMllu.v.p';(r-1 )!, (22)

p' = p/(p - 1) because in view of Theorem 3

where MEM:-V+(AI, BI).
Now we establish the equality (22). Starting from (21) we obtain

(r-1)! IR(f)I=I( (f+(t) M+(t) +f-(t) M_(t)) dt

- ( (f- (t) M + (t) + f + (t) M _ (t)) dt I

::::;; max {( (f+ M + +f _M _) dt;

( (f- M + +f + M _) dt},
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Thus,
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( (f+ M + + f ~ M ~) dt ~ ( (uf+ + vf~)(u-IM + + V -IM ~) dt

~ II u - 1M + + V -1M_II p',

( (f- M + + f + M _ ) dt ~ J: (uf+ + vf~ )(u - 1M_ + v - 1M+ ) dt

~ IIv- IM + + u-IM _lip"

(r-l)! R(W;(u, v))~ IIMllu,v,p"

On the other hand, we have

where fl,f2 E W;(u, v),

flr)(x) = (u-P'(x) M~-I(X) - v-P'(x) M~-I(x))jllu-IM+ + v- 1M ~ II~(P,

frl(x) = (u-P'(x) M~-I(X) - v-P'(x) M~-I(x))jllv-IM+ +u-IM _II~'/P,

and

(r - I)! R( W;(u, v)) ~ max(R(fd, R(f2)) = IIMllu,v,p"

For the class W;,q(u, v) we have the following expression for error R:

(r -1)! R( W;,q(u, v) = max(llu-IM + lip'; Ilu-IM _lip';

II v - 1M+ II q', II v - IM _II q'

=: II M llu,v,p',q' (pi = pj(p -1), q' = qj(q-1),

inf (r-l)!R(W;,iu,v))= inf IIMllu,v,p',q'
QN,bk,lm ME M:V(AI,B1l

4

= IIMollu,v,p',q" (23)

Let u(x) and v(x) be two positive continuous functions on [0,1]. By the
theorem on snakes for monosplines (see [3,5]) there is a unique
monospline M E M~(A, B) and a positive constant c such that

-v(x)~cM(x) ~ u(x) (24)
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and there exist ex := 2N + r + 1 - IA I-IBI points

O~zl<···<z,,~l

at which
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cM(z;) = -v(z;) (i odd), cM(z;) = u(z;) (i even). (25)

For an arbitrary monospline M E M~(A, B) (M i:= M)

IIMllu,v> IIMllu.v= lie ( II f II u, v= II u - If+ +V- If_II (0)' (26)

Indeed, if there exists a monospline M E M~(A, B) such that

IIMII U,v ~ IIMII U,v'

then in view of (24) and (25) v(x) ~ ex - 1, s = M - M. But s is spline of
r - 1 order with at most 2N nodes and with minimal defect and s(i)(O) =0
(i E A), sU)(l) = 0 (j E B). Hence, v(s) ~ ex - 2. This contradiction proves
(26). Thus, in view of Theorem 3 we have proved the following result.

THEOREM 6. Let u and v be two positive continuous functions on [0, 1].
There exists a unique monospline M with minimal (u, v)-norm in M~(A, B),
M E M~+ (A, B). The monospline M has minimal (u, v)-norm if and only if the
function u- IM + + V-I M _ has 2N + r + 1-IA I-IBI alternation points on
[0, 1].

In view of (22) and (23) the following theorem holds.

THEOREM 7, Let u and v be two positive continuous functions on [0, 1].
Let M I be the monospline with minimal (u, v)-norm ((u, u)-norm) in
M~(AI, E I

) and M 2 be the monospline with minimal (v, u)-norm ((v, v)
norm). If IIM11Iu,v = IIM2 1Iv,u (1IMlllu,u = IIM2 1Iv,v) then there exist exactly
two best quadrature formulas of the form (19) for the class W'j(u, v)
(W'j, I (u, v)). They are defined by the nodes and the coefficients of the
monosplines M I and M 2 (see, e,g., [1,4]). If IIMdlu,v # IIM2 1Iu,v (1lMlllu,u #
II M 211 vv) then this formula is unique and defined by the monospline having
bigger norm.

In a similar way the following theorem can be proved.

THEOREM 8. Let u and v be two positive I-periodic continuous functions,
There exists a unique monospline M ~ with minimal (u, v)-norm in M~(n
M~ E M~.t(~), where M~(~) and M~.t(~) are the sets of monosplines from
M~ and M~+ which have one fixed node at the point ~. The monospline M
has minimal (u, v)-norm in M~(~) if and only if the function u-IM+ +
v - 1M _ has 2N alternation points on the period.

640/55/2-5
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THEOREM 9. Let u and v be two positive I-periodic continuous functions
and ~ be a fixed point. M i denotes the monospline with minimal (u, v)-norm
((u, u)-norm) in M~,,( ~) and M 2 denotes the monospline with minimal (v, u)
norm (v, v-norm). If IIMill u•v = IIM2 1Iv.u then there exist exactly two best
quadrature formulas for the class W~ (u, v) (W~ i (u, v)) of form (20) with
fixed node x i at the point ~. They are defined by the nodes and the coef
ficients of the monosplines Mi and M2 • If IIMill u.v# IIM2 11v,u (1IMill u.u#
II M 211 v. v) then this formula is unique and is defined by the monospline having
bigger norm.
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